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1. Introduction

In d = 4, N = 1 supergravity fermions couple to the Kähler connection and the sigma-

model connection. These are composite connections constructed from elementary scalars

and gauge potentials. Since the gauge transformations are embedded in the geometry of a

sigma-model manifold these connections are in general not gauge invariant. In particular

the Kähler connection acts as an additional abelian gauge field that effectively gauges

the U(1)R symmetry. Fermions have chiral couplings to both elementary and composite

connections, so there may be anomalies which threaten the consistency of the theory. This

subject has been investigated both in supergravity models, see [1 – 3] for early work, and

string compactifications [4 – 6].

A general analysis of the quantum consistency conditions for supergravity was recently

presented in [7], in which effects of the composite connections were emphasized. It follows

from the gauge field equations of motion DµF aµν = Jaν that

0 ≡ DνDµF aµν = DνJaν . (1.1)

The left side vanishes identically, so the current Jaν must be conserved. Conservation

holds in the classical theory, but can be violated in the quantum theory by anomalies,
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viz. DνJ
aν = Aa 6= 0. The quantum theory is inconsistent unless the anomalies are

cancelled. The detailed consistency conditions for supergravity were found in [7] and

expressed in terms of covariant anomalies.

The purpose of this paper is to unravel the structure of the consistency conditions and

clarify the anomaly cancellation conditions required by quantum consistency of the theory.

We focus here on theories with flat target spaces. We recast the consistency conditions in

terms of consistent anomalies and consider the effects of finite local counter terms. This

reduces the results of [7] to a set of physically necessary consistency conditions. We further

discuss the Green–Schwarz mechanism, which requires additional degrees of freedom.

Two distinct consistency conditions, abelian and non-abelian, arise from (1.1) depend-

ing on whether the current Jaν is abelian or non-abelian. We are especially concerned

with mixed anomalies. Using Cµν and F a
µν for the abelian and non-abelian field strengths,

examples of (covariant) mixed anomalies are terms involving the non-abelian fields like

εµνρσtr FµνFρσ in the divergence of the abelian current (“mixed abelian anomalies”), or

εµνρσtr T aCµνFρσ in the divergence of the non-abelian current (“mixed non-abelian anoma-

lies”). The field strength Kµν = ∂µKν − ∂νKµ of the Kähler connection Kµ also appears

in the mixed anomalies.

For supergravity theories with a flat sigma-model target space and a gauge group

G×U(1) we clarify the anomaly cancellation conditions, with and without Fayet–Iliopoulos

couplings. The results are summarized and discussed at the end of section 3. In case of

vanishing Fayet–Iliopoulos couplings, standard conditions on the matter content suffice to

ensure consistency of the theory. But for general non-vanishing Fayet–Iliopoulos couplings

consistency requires the Green–Schwarz mechanism.

The standard Green–Schwarz mechanism can only remove anomalies in abelian conser-

vation laws.1 Consequently, to ensure consistency, all mixed non-abelian anomalies must

be cancelled by other means; either by finite local counter terms or by imposing conditions

on the matter content of the theory. Furthermore, the Green–Schwarz mechanism requires

that the abelian anomaly removed is gauge covariant. However, not all consistent mixed

abelian anomalies are covariant. Local counter terms are needed to restructure them be-

fore the Green–Schwarz method is applied. We construct here finite local counter terms

which have both required properties: (1) they remove completely the consistent mixed

non-abelian anomalies, and (2) they simultaneously convert the consistent mixed abelian

anomalies to covariant form. The final resulting consistency conditions are summarized in

section 4, where we also comment on the effect of gravitational anomalies.

We focus in most of this work on Kähler potentials that are invariant under non-abelian

gauge transformations. A simple model with a non-invariant Kähler potential is studied

in section 5.1. Since the Kähler connection transform as a U(1) connection under non-

abelian gauge transformations, a Green–Schwarz mechanism can be used to cancel certain

anomalies in the non-abelian current conservation law.

This study is relevant to various models of cosmology and particle physics that make use

of Fayet–Iliopoulos couplings, such as D-term inflation [8, 9], or supersymmetry breaking

1An exception to this is studied in section 5.1.
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via an anomalous U(1) [10], or the string solutions for so-called D-strings in [11 – 14], see

also [15, 16]. In string theory Fayet–Iliopoulos couplings were discussed by Dine, Seiberg

and Witten [17]. More recently, D-terms and Fayet–Iliopoulos couplings have played an

important role in the context of moduli stabilization in string compactifications, see [18],

following the proposal of Kachru, Kallosh, Linde, and Trivedi [19]. Our conclusion about

the validity of such models at the quantum level is that Fayet–Iliopoulos couplings can only

be consistent if one incorporates a Green–Schwarz mechanism to cancel residual anomalies.

Such a Green–Schwarz mechanism modifies the physics by generating a mass for the gauge

boson and by a contribution to the D-term potential.

The paper is organized as follows. In section 2 we review the covariant and consis-

tent anomalies, and we show how finite local counter terms can be used to restructure

mixed anomalies. We review in section 3 the consistency conditions derived in ref. [7],

write the anomaly cancellation conditions in terms of the consistent anomaly, and include

local counter terms to reduce the anomaly cancellation conditions. The Green–Schwarz

mechanism is discussed in section 4. We discuss briefly in section 5 generalizations to non-

gauge invariant Kähler potentials as well as the supersymmetrization of anomalies and local

counter terms. We conclude in section 6 with a summary and discussion of our results.

2. Covariant vs. consistent anomalies

To derive the physically relevant anomaly cancellation conditions from the requirement

of current conservation it is crucial to use the proper form of the anomalies and include

all possible (finite) local counter terms into the Lagrangian. To provide the background

material needed later we have included a short review section on consistent and covariant

anomalies.

Consider the kinetic Lagrangian of a Weyl fermion, written as the left-handed compo-

nent of a Dirac fermion, minimally coupled to a background gauge field Vµ,2

L = ψ̄γµDµLψ , DµLψ = (∂µ + Vµ)Lψ , (2.1)

where L = 1
2(1−γ5), R = 1

2(1+γ5) and Vµ = V a
µ T a. The T a are anti-hermitian generators

of a Lie algebra for a gauge group G, which may contain U(1) factors. The action with (2.1)

is invariant under chiral gauge transformations,

Lψ → e−θ(x)Lψ , Vµ → e−θ(x)Vµeθ(x) + e−θ(x)∂µeθ(x) (2.2)

with θ = θaT a. Correspondingly, the left-chiral current is classically conserved,

ja
µ = −ψ̄γµT aLψ , 0 = Dµjµ = ∂µjµ + [Vµ, jµ] . (2.3)

Classical symmetries and conservation laws receive corrections in the quantum theory due

to anomalies.

2We concentrate on the left-chiral part of the gauge transformations. Generalizations are straight for-

ward.
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2.1 Anomalies

The covariant (left-)chiral anomaly is

(Dµjµ)a =
i

32π2
εµνρσtr

[
T aVµνVρσ

]

=
i

8π2
εµνρσtr

[
T a∂µ

(
Vν∂ρVσ +

2

3
VνVρVσ

)]
, (2.4)

with Vµν = ∂µVν − ∂νVµ + [Vµ, Vν ]. An anomaly reflects the gauge non-invariance of the

effective action

e−W [Vµ] = Γ[Vµ] =

∫
Dψ̄Dψ e−S[Vµ,ψ̄,ψ] , (2.5)

where Vµ denotes a background gauge field. Defining the current ja µ = −δL[Vµ]/δV a
µ one

has

δθW [Vµ] =

∫
d4x θaAa , (2.6)

where Aa = 〈(Dµjµ)a〉 is the anomaly under the gauge transformation

δθVµ = Dµθ = ∂µθ + [Vµ, θ] . (2.7)

The Wess-Zumino consistency condition [δθ1
, δθ2

]W [Vµ] = δ[θ1,θ2]W [Vµ] requires

δθ1
(θa

2Aa) − δθ2
(θa

1Aa) = [θ1, θ2]
aAa (2.8)

for the anomaly [20]. It is not satisfied for a simple non-abelian gauge group by the covariant

anomaly (2.4), since a factor of 2 appears on the right side of eq. (2.8), see e.g. [21].

The form of the anomaly that does satisfy (2.8) is known as the consistent anomaly

(Bardeen [22], Gross and Jackiw [23]). The consistent anomaly follows from a Bose sym-

metric regularization of the triangle and quadrangle Feynman diagrams for correlation

functions of the potentials Vµ. For the left-chiral current (2.3) it can be written3

(Dµjµ)a =
i

24π2
εµνρσtr

[
T a ∂µ

(
Vν ∂ρVσ +

1

2
VνVρVσ

)]
. (2.9)

Note that (2.4) does not transform covariantly. For abelian Vµ, the cubic term is absent

and the anomalies (2.4) and (2.9) differ by an overall factor of 1
3 which accounts for Bose

symmetry of the triangle amplitude.

The reason Wess-Zumino consistency fails for the covariant anomaly is that the current

on the left-hand side of (2.4) is not the variation of the effective action. Bardeen and Zumino

showed [24] that the current in (2.4) differs from the consistent current by a polynomial

local in the gauge potential. For a simple non-abelian gauge group the Bardeen-Zumino

polynomial cannot be written as the gauge variation of a finite local counter term added to

the effective action. Hence the covariant and the consistent anomalies are not physically

equivalent.4 For the purpose of analyzing the consistency conditions [7] for currents which

are sources of gauge fields, the relevant form of the anomaly is the consistent anomaly (2.9).

3For a right-chiral current the overall sign of the anomaly changes.
4Nonetheless, the vanishing of the covariant and the consistent anomalies for a simple gauge group

requires the same condition, namely tr T a{T b, T c} = 0.
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2.2 Local counter terms

Having established that the two forms, (2.4) and (2.9), of anomalies are not equivalent for

a simple non-abelian gauge group, we point out how one can interpolate between them for

a mixed anomaly.5 This will later be crucial for applying the Green–Schwarz mechanism.

Consider a gauge group which is the product of a single U(1) factor and a simple non-

abelian group G, G = G×U(1). Write the gauge field Vµ = Aa
µT a+iQCµ, where the T a are

anti-hermitian generators of G and Q is the charge under U(1). We use F a
µν for the non-

abelian field strength and Cµν for the abelian field strength. Inserting Vµ = Aa
µT a + iQCµ

into the expression for the consistent anomaly (2.9) and covariant anomaly (2.4), we pick up

terms which are purely abelian or purely non-abelian anomalies as well as mixed anomalies.

We write this

(Dµjµ)a = Aa = Aa
non−ab + Aa

mixed ,

(Dµjµ)Q = AQ = AQ
abel + AQ

mixed , (2.10)

where ja
µ = −δL/δAa

µ = −iψ̄γµT aLψ and jQ
µ = −δL/δCµ = −iψ̄γµiQLψ are the non-

abelian and abelian currents. Below subscripts “cov” or “con” indicate whether a given

term in the anomalies is written in the covariant form (2.4) or the consistent form (2.9).

To be explicit, we list the mixed anomalies Aa
mixed and AQ

mixed in covariant and consis-

tent form respectively,

AQ
mixed cov =

i

32π2
εµνρσtr iQFµνFρσ =

i

8π2
εµνρσtr

[
iQ∂µ

(
Aν ∂ρAσ +

2

3
AνAρAσ

)]
,

AQ
mixed con =

i

24π2
εµνρσtr

[
iQ∂µ

(
Aν ∂ρAσ +

1

2
AνAρAσ

)]
,

Aa
mixed cov =

i

16π2
εµνρσtr

[
T aiQCµνFρσ

]
,

Aa
mixed con =

i

12π2
εµνρσtr

[
T aiQ∂µ

(
Cν ∂ρAσ +

1

4
CνAρAσ

)]
. (2.11)

There are two candidate polynomials in Cµ and Aµ from which finite local counter

terms in the Lagrangian can be constructed,

L1 = − i

12π2
εµνρσCµtr

[
iQAν∂ρAσ

]
,

L2 = − i

12π2
εµνρσCµtr

[
iQAνAρAσ

]
. (2.12)

Their gauge variations under non-abelian gauge transformations (2.7) are (up to total

derivatives)

δθL1 = − i

12π2
εµνρσtr

[
iQθ

(
∂µCν ∂ρAσ − 2∂µ(CνAρAσ)

)]
,

δθL2 = − i

4π2
εµνρσtr

[
iQθ∂µ(CνAρAσ)

]
. (2.13)

5Recent interesting work [25] studies local counter terms and the Green–Schwarz mechanism in connec-

tion to anomalous U(1)’s.
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One may add these counter terms with arbitrary coefficients to the Lagrangian. This

would modify the non-abelian current conservation law by terms proportional to (2.13).

The unique combination

Lct = L1 +
3

4
L2 (2.14)

precisely cancels the non-abelian mixed anomaly in the consistent form,

δθLct = − θaAa
mixed con . (2.15)

Under abelian gauge variations

δΛCµ = ∂µΛ (2.16)

the counter term gives

δΛLct = −Λ(AQ
mixed con −AQ

mixed cov) , (2.17)

i.e. it “rotates” the consistent form of the abelian mixed anomaly into covariant form. As

discussed in the Introduction, this is essential for the Green–Schwarz mechanism.

The gauge variations (2.13) of the counter terms yield total derivatives, but the co-

variant mixed anomaly Aa
mixed cov given in (2.11) involves εµνρσtr T aCµνFρσ which is not a

total derivative. Hence the non-abelian variations of the counter terms (2.13) could never

fully cancel Aa
mixed cov, it is therefore crucial to use Aa

mixed con.

3. Kähler anomalies in supergravity

We start with a summary of some relevant structures of the supergravity Lagrangian and

of results of [7].

3.1 Supergravity and composite connections

We consider theories with a supergravity multiplet (ei
µ,Ψµ) coupled to gauge multiplets

(V a
µ , λa) and chiral multiplets (zα, Lψα). We write the gravitino Ψµ and the gauginos λa as

four-component Majorana spinors, and the Weyl spinors of the chiral multiplets are written

with projectors L,R. We write the action S =
∫

d4x
√−gL and use ε0123 = (−g)−1/2. More

details, including the Lagrangian, are given in [7].

The scalar fields are complex coordinates on a Kähler manifold with Kähler poten-

tial K = K(z, z̄) and metric Gαβ̄ = K,αβ̄ (a comma indicating a partial, a semi-colon

a covariant derivative). In supergravity, isometries of the Kähler manifold generated by

holomorphic Killing vectors, Xaα(z), Xaᾱ(z̄), can be gauged. Holomorphic Killing vectors

can be expressed as gradients of a real Killing prepotential Da(z, z̄) as Da
,β̄

= iXaαGαβ̄ .

For non-abelian gauge groups the prepotentials are uniquely determined by the require-

ment that they transform in the adjoint representation. For abelian gauge groups, there

is an additional freedom of adding a constant, Da → Da + ξa. These constants are the

Fayet–Iliopoulos couplings of the theory.
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The Kähler metric must be invariant under the isometry, and this requirement is

exactly the Killing equation

δaGαβ̄ = Xa
α;β̄ + Xa

β̄;α = 0 . (3.1)

However, the Kähler potential need not be invariant and transforms as

δaK(z, z̄) = XaαK,α +XaᾱK,ᾱ = F a(z) + F̄ a(z̄) . (3.2)

The holomorphic function F a(z) is related to Da,

F a = XaαK,α +iDa . (3.3)

The supergravity model contains an elementary gauge field V a
µ for each isometry. They

appear in covariant derivatives of the scalars as Dµzα = ∂µzα−V a
µ Xaα and in the composite

Kähler connection

Kµ =
1

2i

(
K,α Dµzα + F aV a

µ − c.c.
)

=
1

2i

(
K,α ∂µzα − c.c.

)
+ V a

µ Da . (3.4)

Under gauge transformations (2.7) for V a
µ and δzα = θa(x)Xaα for zα, the Kähler connec-

tion transforms as a U(1) connection

δKµ = ∂µ(θaIm F a(z)) . (3.5)

The non-invariance of K and the coupling of Kµ in the covariant derivatives of all fermions

are the essential complicating factors of the anomaly analysis in supergravity.

The fermion covariant derivatives are

DµΨν =
(
∇µ +

1

2
iKµγ5

)
Ψν =

(
∂µ +

1

4
ωµijγ

ij +
1

2
iKµγ5

)
Ψν ,

Dµλa =
(
∇µδac +

1

2
iKµγ5δ

ac + fabcV b
µ

)
λc ,

DµLψα =
(
∇µδα

β + Σα
βµ +

1

2
iKµδα

β − Xaα,β V a
µ

)
Lψβ . (3.6)

The first line of (3.6) defines the derivative ∇µ which includes the spin-connection. The

other composite connection is the sigma-model connection Σα
µβ = Γα

βγDµzγ , where Γα
βγ =

Gαδ̄Gβδ̄,γ are the Kähler Christoffel connections. It will not be important for us. Note

that 1
2Kµ gauges a U(1)R symmetry under which LΨµ and Lλa have charge +1 and Lψα

has charge −1. The gravitational coupling κ has been set to κ = 1 for simplicity, but it

actually appears in the fermion covariant derivatives through κ2Kµ.

The infinitesimal gauge transformations of the fermions are

δΨµ = − i

2
θaIm F a(z)γ5Ψµ ,

δλa = fabcλbθc − i

2
θbIm F b(z)γ5λ

a , (3.7)

δLψα = θaXaα,β Lψβ − i

2
θaImF a(z)Lψα .

– 7 –
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The ImF a-terms compensate the transformation (3.5) of Kµ, while the other terms are

standard transformations of gauginos and chiral fermions.

The chiral transformations (3.7) are anomalous and it is these anomalies which are

studied in [7]. Consistency of the quantum theory requires that the following combination

of anomalous current divergences must cancel:

0 = iY a
αβ̄〈∇µ(ψ̄β̄γµLψα)〉 +

1

2
〈∇µ(λ̄bfabcγµλc)〉 +

1

2
Im F a〈∇µNµ〉 , (3.8)

with

Y a
αβ̄ =

1

2i

(
Gγβ̄Xaγ ,α −Gαγ̄Xaγ̄ ,β̄

)
. (3.9)

The current Nµ is the U(1)R current to which the Kähler connection couples, namely

Nµ = − i

2

[
2Gαβ̄ψ̄β̄γµLψα + λ̄aγµγ5λ

a + Ψ̄ργ
ρµνγ5Ψν

]
. (3.10)

In (3.8) the brackets 〈. . .〉 indicate the quantum anomalies of each current. These anomalies

were computed in [7] as covariant anomalies using the Fujikawa method. The expressions

for the anomalies are rather complicated in the general case, involving the field strengths

of the full connections in (3.6). The consistency conditions (3.8) will be rewritten in terms

of consistent anomalies in section 3.3.

3.2 Supergravity models with flat target space

In most of this paper we will restrict the treatment to models with flat target space and

linearly realized gauge symmetries,

K(z, z̄) = δαβ̄zαzβ̄ , Gαβ̄ = δαβ̄ , Xaα,β = −T aα
β = −T ai

je
α
i ej

β . (3.11)

The sigma-model connection then vanishes, Σα
βµ = Γα

βγDµzγ = 0. Although the Kähler po-

tential is gauge invariant, ImF a can be nonzero when there are Fayet–Iliopoulos couplings,

i.e.

F a = iξa (3.12)

for abelian factors of the gauge group. The Kähler connection (3.4) then becomes

Kµ = Im(δαβ̄zβ̄Dµzα) + ξaV a
µ . (3.13)

The T a
ij are the anti-hermitian constant matrix generators of the gauge symmetry and we

use

[T a, T b] = fabcT c , facdf bcd = δabC2(G) , trr(T
aT b) = −C(r)δab , (3.14)

where “trr” indicates the trace over the irreducible representation r and “tr” the trace over

the full spectrum of chiral fermions, not including the gauginos or the gravitino. In this

limit (3.8) simplifies to

0 = − 〈∇µ(ψ̄iT a
ijγ

µLψj)〉 +
1

2
〈∇µ(λ̄bfabcγµλc)〉 +

1

2
ξa〈∇µNµ〉 . (3.15)

This is the consistency condition that we now study in detail.

– 8 –
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3.3 Consistent anomalies

As we have pointed out, it is the consistent form of anomalies that are relevant to conserva-

tion laws of gauge currents. We now evaluate the consistency condition (3.15) using (2.9)

for the anomalies. We specialize to the gauge group G × U(1). As in section 2.2 we use

T a and iQ for the generators and Aa
µ and Cµ for the gauge fields, F a

µν and Cµν for their

field strengths. If necessary, we label abelian quantities by Q, but we drop the label a on

the Fayet–Iliopoulos coupling ξ of the single U(1). This notation should not be confused

with the previous section where a was an index of the full gauge group, not just G. In

particular, we now write F a = 0 and FQ = iξ instead of (3.12). With these simplifications,

the gauge potentials coupling in the left-chiral covariant derivatives (3.6) are

Ψµ : Vµ = − i

2
Kµ ,

λa : V ab
µ = −Ac

µfabc − i

2
Kµδab ,

Lψα : Vµ = Aa
µT a + iQCµ +

i

2
Kµ . (3.16)

The consistent anomalies are obtained by inserting the relevant connection Vµ for each

of the three types of fermions in (2.9) and collect results.

Non-abelian consistency condition:

The non-abelian consistent anomaly of the chiral fermion current now reads

− 〈∇µ(ψ̄iT a
ijγ

µLψj)〉 =
1

24π2
εµνρσtr T a

[
i
{

∂µAν∂ρAσ +
1

2
∂µ(AνAρAσ)

}
(3.17)

−
{
∂µKν∂ρAσ +

1

4
∂µ(KνAρAσ)

}

−2Q
{

∂µCν∂ρAσ +
1

4
∂µ(CνAρAσ)

}]

.

We recognize in the first line the standard purely non-abelian anomaly and in the two other

lines the mixed G2 − U(1) plus the mixed G2−Kähler anomalies. We also have

1

2
〈∇µ(λ̄bfabcγµλc)〉 = − 1

24π2
εµνρσC2(G)

[
∂µKν∂ρA

a
σ +

1

8
fabc∂µ(KνAb

ρA
c
σ)

]
. (3.18)

Abelian consistency condition:

The abelian consistent anomaly of the chiral fermion current is

−〈∇µ(ψ̄iiQδijγ
µLψj)〉 =

1

24π2
εµνρσtr

[
Q3∂µCν∂ρCσ +

1

4
Q∂µKν∂ρKσ + Q2∂µKν∂ρCσ

−Q
(
∂µAν∂ρAσ +

1

2
∂µ(AνAρAσ)

)]
, (3.19)
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which contains the U(1)3, mixed U(1)−Kähler and mixed G2 − U(1) anomalies. The

anomaly of the last term of (3.8) is

1

2
ξ〈∇µNµ〉 = − 1

24π2

1

2
ξεµνρσ

[
− tr(Q2)∂µCν∂ρCσ − tr(Q)∂µCν∂ρKσ

+
1

4

(
nλ + 3 − nψ

)
∂µKν∂ρKσ (3.20)

+
(
C2(G) −

∑

r

C(r)
)(

∂µAa
ν∂ρA

a
σ +

1

4
fabc∂µ(Aa

νA
b
ρA

c
σ)

)]
.

In the ∂K∂K term, nλ = dim(G) is the total number of gauginos, nψ is the number of

chiral fermions, and 3 is the gravitino contribution.

3.4 Anomaly cancellation with local counter terms

As discussed in section 2.2, non-gauge invariant local counter terms can remove or restruc-

ture the anomalies. We now apply the result of section 2.2 to the anomaly conditions in

the previous subsection.

To start with consider the non-abelian consistency condition

− 〈∇µ(ψ̄iT a
ijγ

µLψj)〉 +
1

2
〈∇µ(λ̄bfabcγµλc)〉 = 0 , (3.21)

with the two contributions given by (3.17) and (3.18) above. A counter term

LCAA =
1

12π2
εµνρσCµtr

[
Q

(
Aν∂ρAσ +

3

4
AνAρAσ

)]
(3.22)

will cancel the G2 − U(1) mixed non-abelian anomaly and promote the abelian mixed

anomaly to covariant form. The mixed G2−Kähler anomaly is analogous, except for an

overall factor C2(G) − ∑
r C(r). The correct counter term is

LKAA =
1

24π2

(
C2(G) −

∑

r

C(r)
)
εµνρσKµ

(
Aa

ν∂ρA
a
σ +

3

8
fabcAa

νAb
ρA

c
σ

)
. (3.23)

With these counter terms the non-abelian consistency condition becomes

0 = −θa〈∇µ(ψ̄iT a
ijγ

µLψj)〉 +
1

2
θa〈∇µ(λ̄bfabcγµλc)〉 + δθLCAA + δθLKAA

=
i

24π2
εµνρσθa tr T a

[
∂µAν∂ρAσ +

1

2
∂µ(AνAρAσ)

]
. (3.24)

Mixed terms have been removed and we are left with the unavoidable non-abelian G3

anomaly. Its cancellation imposes the condition tr[T a{T b, T c}] = 0 on the matter spectrum.

Let us now turn to the abelian consistency condition

−〈∇µ(ψ̄iiQδijγ
µLψj)〉 +

1

2
ξ〈∇µNµ〉 = 0 . (3.25)

The abelian gauge variations read

δΛCµ = ∂µΛ , δΛKµ = ξ∂µΛ , (3.26)
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and the counter terms LCAA and LKAA restructure the consistent mixed anomalies into

gauge invariant form.

The abelian consistency condition becomes

0 = −Λ〈∇µ(ψ̄iiQδijγ
µLψj)〉 +

1

2
ξΛ〈∇µNµ〉 + δΛLCAA + δΛLKAA

=
1

96π2
εµνρσΛ

[
tr

[(
Q +

1

2
ξ
)
Q2

]
CµνCρσ + tr

[(
Q +

1

2
ξ
)
Q

]
KµνCρσ

+
1

4

(
tr

[
Q +

1

2
ξ
]
− 1

2
ξ(nλ + 3)

)
KµνKρσ

−3
(
tr

[(
Q +

1

2
ξ
)
T aT b

]
+

1

2
ξC2(G)δab

)
F a

µνF b
ρσ

]

, (3.27)

with Kµν = ∂µKν − ∂νKµ.

We must also consider the two counter terms

LCKK = − 1

24π2
εµνρσCµKν∂ρKσ , LKCC = − 1

24π2
εµνρσKµCν∂ρCσ , (3.28)

which allow further cancellation of anomalies in the abelian consistency condition. Their

gauge variations (after integration by parts) are

δΛLCKK = − 1

96π2
εµνρσΛ(ξCµνKρσ − KµνKρσ) ,

δΛLKCC = − 1

96π2
εµνρσΛ(CµνKρσ − ξCµνCρσ) . (3.29)

We add aCKKLCKK + aKCCLKCC to the Lagrangian and list below the independent terms

from (3.27) and (3.24):

CC̃ : 0 = tr
[(

Q +
1

2
ξ
)
Q2

]
+ ξ aKCC ,

CK̃ : 0 = tr
[(

Q +
1

2
ξ
)
Q

]
− ξ aCKK − aKCC ,

KK̃ : 0 = tr Q − 1

2
ξ(nλ + 3 − nψ) + 4aCKK ,

F aF̃ b : 0 = tr
[
QT aT b

]
+

1

2
ξ
[
C2(G) −

∑

r

C(r)
]
δab ,

G3 : 0 = tr
[
T a{T b, T c}

]
. (3.30)

Each of the conditions (3.30) must be satisfied separately. Given the original field content

of the model, these are the final and physical conditions for the cancellation of gauge

anomalies. Gravitational anomalies will be considered next, and we will add new fields

required by the Green–Schwarz mechanism in section 4.
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There are additional consistency conditions from the gravitational anomalies with and

external gauge current and two energy-momentum tensors in the triangle diagram. The

resulting consistency condition is

0 = −〈∇µ(ψ̄iiQδijγ
µLψj〉grav +

1

2
ξ〈∇µNν〉grav

= − 1

768π2

[
tr(Q) − 1

2
ξ(nλ − 21 − nψ)

]
εµνρσRµνξτRρσ

ξτ . (3.31)

For models with ξ = 0, one can choose aKCC and aCKK to satisfy the second and

third conditions of (3.30). The remaining conditions reduce to the conventional anomaly

cancellation conditions of a gauge theory coupled to gravity, namely the four traces tr Q,

tr Q3, tr QT aT b, and tr T a{T b, T c} must vanish. Note that without the counter term

contribution (3.28), the second term in (3.30) would be positive definite and could never

be cancelled by adjustment of the matter field content.

We now consider models with non-vanishing Fayet–Iliopoulos coupling. There are

various cases of interest.

The first case is just an abelian vector multiplet coupled to supergravity and no chiral

multiplets [1]. In this model Kµ = ξCµ; hence the counter terms (3.28) vanish. The only

gauge anomaly condition which remains is 0 = ξ(nλ + 3) = 4ξ. The gravitational anomaly

reduces to 0 = ξ(nλ − 21) = −20ξ. Clearly the model is inconsistent for ξ 6= 0.

In general models, we now show that it is very unlikely that the consistency conditions

can be satisfy for non-vanishing ξ. First we choose the counter term coefficients aKCC and

aCKK to satisfy the first two conditions of (3.30) and substitute the value of aCKK into the

third condition. We then replace nλ − nψ by the value determined by (3.31). The result is

0 = tr

[(
Q +

1

2
ξ
)(

Q + ξ
)
Q

]
− 3ξ3 . (3.32)

Consistency now requires that we satisfy the G3 and FF̃ conditions of (3.30), and the

conditions (3.32) and (3.31). A solution would require that both conditions linear in ξ

have a common solution which is then one of the roots of the cubic condition (3.32). For

given matter content this is extremely unlikely. This conclusion can be changed using a

Green–Schwarz mechanism, as we discuss in the next section.

4. Green–Schwarz anomaly cancellation

The Green–Schwarz mechanism for anomaly cancellation in four dimensions is well known

[5, 4]. One adds a chiral multiplet with a gauged shift symmetry. Decomposing the complex

scalar s of the chiral multiplet as s = ρ + ia, the bosonic terms of the Green–Schwarz

Lagrangian can then be written as

LGS = −(∂µρ)2 − (∂µa + cGSCµ)2 +
1

96π2
a εµνρσ∂µΩνρσ . (4.1)
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where the Chern–Simons form Ωνρσ satisfies

εµνρσ∂µΩνρσ = εµνρσ
[
bCCCµνCρσ + bCKKµνCρσ

+bKKKµνKρσ + bAAF a
µνF a

ρσ + bRRRµνητ R ητ
ρσ

]
. (4.2)

In a model originating from string theory [6, 25 – 28] (see also [29]), the constants b.. will

be fixed, but we keep them arbitrary here to illustrate their role in anomaly cancellation.

The scalar s is invariant under non-abelian gauge transformation, so δθLGS = 0. Under

abelian gauge transformations,

δΛa = −cGSΛ , δΛρ = 0 . (4.3)

The first term in (4.1) is then gauge invariant, and it is then the last term whose gauge

variation modifies the previous conditions (3.30) as follows:

CC̃ : 0 = tr
[(

Q +
1

2
ξ
)
Q2

]
+ ξ aKCC − cGS bCC ,

CK̃ : 0 = tr
[(

Q +
1

2
ξ
)
Q

]
− ξ aCKK − aKCC − cGS bCK ,

KK̃ : 0 = tr Q − 1

2
ξ(nλ + 3 − nψ) + 4aCKK − 4cGS bKK ,

F aF̃ b : 0 = tr
[
QT aT b

]
+

1

2
ξ
[
C2(G) −

∑

r

C(r)
]
δab +

1

3
cGS bAAδab ,

G3 : 0 = tr
[
T a{T b, T c}

]
,

RR̃ : 0 = tr(Q) − 1

2
ξ(nλ − 21 − nψ) + 8cGS bRR . (4.4)

Here nψ includes the contribution from the fermion partner χ of the Green–Schwarz scalar

s. It is now evident that there is enough flexibility to cancel all gauge anomalies, and

the only condition that needs to be imposed on the spectrum is tr[T a{T b, T c}] = 0 for

the irreducible non-abelian anomaly. In fact, there is more flexibility than needed. We

can set bCK = bKK = 0 and thus eliminate the composite connection completely from the

Green–Schwarz Lagrangian. The remaining parameters then suffice to cancel all but the

G3 anomaly and allow an arbitrary value of the Fayet–Iliopoulos coupling.

The Green–Schwarz mechanism has served well to cancel the anomalies, but it has

changed the physics of the model. To see this note that the a-Cµ cross term can be

removed by an appropriate gauge fixing condition. This leaves a mass term

−c2
GSCµCµ . (4.5)

Because of the gauged shift symmetry, the supersymmetric Lagrangian also contains a

gauge invariant mass term cGSλ̄Cχ, where λC is gaugino partner of Cµ. This gives a

fermion mass equal to that of the gauge bosons.

¿From the general form Dµs = ∂µs−XasAa
µ we can formally identify the Killing vector

Xs = −icGS . (4.6)
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The original scalars zα and the Green–Schwarz scalar s combine in the gauge invariant

Kähler potential

K(s, s̄, z, z̄) = δαβ̄zαzβ̄ +
1

2
(s + s̄)2 . (4.7)

The new contribution from s to the Kähler connection is gauge invariant, so ImF a = ξ is

not changed, and the anomaly analysis is unmodified.

¿From (3.3) with F a = iξ we find the U(1) D-term

D = iXsK,s +iXαK,α +ξ = δαβ̄zαQzβ̄ + 2cGSρ + ξ . (4.8)

The scalar potential of supergravity contains the term 1
2D2. This term is minimized at

D = 0, which can be achieved by adjusting ρ. Thus the breaking of the U(1) symmetry

does not change the vacuum energy.

5. Generalizations

5.1 Non-gauge invariant Kähler potentials

It is interesting to examine the effect of a gauge non-invariant Kähler potential in the

analysis of the gauge consistency conditions. We consider as in (3.11) the simplest model

of flat target space C
n with linearly realized gauge symmetries. For simplicity, we exclude

U(1) factors and gauge only a non-abelian simple subgroup of SU(n). However, contrary

to the gauge invariant Kähler potential (3.11) we take here the unconventional Kähler

potential

K(z, z̄) = δαβ̄zαzβ̄ + k(z) + k̄(z̄) . (5.1)

Here k is a non-constant holomorphic function, whose gauge variation (3.2) generates

F a = Xaαk,α . (5.2)

It is somewhat artificial to break gauge symmetry by taking such an unnatural Kähler po-

tential. However, most of our analysis — including the Green–Schwarz cancellation mech-

anism — applies to theories on non-flat target spaces in which gauge symmetry breaking

in the Kähler potential cannot be avoided.

The gauge consistency conditions are again a special case of the result of [7]. Since

Im F a 6= 0 the non-abelian consistency condition (3.21) includes the contribution from the

divergence of the Noether current and now reads

0 = −〈∇µ(ψ̄iT a
ijγ

µLψj)〉 +
1

2
〈∇µ(λ̄bfabcγµλc)〉 +

1

2
Im F a〈∇µNµ〉

=
1

24π2
εµνρσ

[

tr iT a
{
∂µAν∂ρAσ +

1

2
∂µ(AνAρAσ)

}

−t̂r T a
{

∂µKν∂ρAσ +
1

4
∂µ(KνAρAσ)

}

−1

2
Im F a t̂r

{
∂µAν∂ρAσ +

1

2
∂µ(AνAρAσ)

}

−1

8
Im F a (nλ + 3 − nψ)∂µKν∂ρKσ

]
. (5.3)
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In the second equality we have inserted the expressions for the anomalies (3.17), (3.18),

and (3.20) with the abelian ξ replaced by Im F a. We have also dropped the U(1) contri-

butions by setting Q = 0. For brevity, we have introduced the notation t̂r = tr − tradj,

i.e. the trace over chiral fermions minus the trace over gauginos. The minus sign in t̂r

arises in (5.3) because the Kähler connection couples to chiral fermions and gauginos with

opposite signs.

Before discussing the gauge consistency conditions (5.3) and the effect of local counter

terms, we comment on Wess-Zumino (WZ) consistency (2.8). First recall that in the anal-

ysis of the previous sections, Im F a vanished so that Kµ was invariant under non-abelian

gauge transformations. The first two lines of (5.3) were then the only contributions to the

gauge consistency condition and each of them independently satisfied the WZ consistency

condition (2.8). In the present model, though, the Kähler connection does transform under

non-abelian gauge transformations, δθKµ = ∂µ(Im F aθa), and that gives an extra contri-

bution to the variation of the anomaly in the second line of (5.3); by itself the second line

of (5.3) is no longer WZ consistent.

It turns out that WZ consistency is saved by contributions from 1
2Im F a〈∇µNµ〉. The

∂K∂K contribution in the last line of (5.3) satisfies WZ consistency because of the non-

abelian transformation of ImF a. The gauge variation of the third line in (5.3) has two

contributions: the variation of ImF a yields the term required by WZ consistency, but the

variation of t̂r [dAdA + (1/2)d(A3)] gives an extra term. Conveniently, that extra term

precisely cancels the unwanted term from the variation of Kµ in the second line of (5.3).

Thus the full expression (5.3) does indeed satisfy the WZ consistency condition (2.8).

Returning to the analysis of the gauge consistency condition (5.3) we note that since

Kµ transforms as an abelian connection under non-abelian gauge variations, the local

counter term LKAA given in (3.23) removes the anomaly in the second line of (5.3) and it

simultaneously converts the third line to covariant form. Including LKAA in the Lagrangian,

the physically relevant form of the gauge consistency condition becomes

0 = −〈∇µ(ψ̄iT a
ijγ

µLψj)〉 +
1

2
〈∇µ(λ̄bfabcγµλc)〉 +

1

2
Im F a〈∇µNµ〉 + δa

θLKAA

= εµνρσ

[
1

24π2
tr iT a

{
∂µAν∂ρAσ +

1

2
∂µ(AνAρAσ)

}
(5.4)

− 1

32π2

1

2
Im F a t̂r FµνFρσ − 1

96π2

1

2
ImF a 1

4
(nλ + 3 − nψ)KµνKρσ

]

.

For non-vanishing ImF a, consistency requires, besides the usual G3 anomaly condition,

that C2(G) =
∑

r C(r) and nλ + 3 − nψ = 0. In addition, cancellation of the gravitational

anomaly requires nλ−21−nψ = 0. It is clear that these conditions cannot be simultaneously

be satisfied, and so the models are inconsistent. An example is the (non-supersymmetric)

gaugino model considered as a toy example in [7]. The model has no chiral multiplets and

no gravitino, and the gauge anomaly KK̃ renders the model inconsistent.

In the previous section, we successfully applied the Green–Schwarz mechanism to re-

move anomalies. The fact that Kµ transforms as a U(1) connection under non-abelian
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gauge transformations, suggests that a Green–Schwarz mechanism can remove covariant

anomalies proportional to ImF a from the non-abelian conservation law.

A Green–Schwarz mechanism with a Chern–Simons term a εµνρσ∂µΩνρσ can be used to

cancel the mixed non-abelian anomalies in (5.4) provided that the axion transforms under

non-abelian gauge transformations as δθa = −kGS Im F aθa for some constant kGS, see [5].

Holomorphic behavior of the Green–Schwarz complex scalar s = ρ + ia requires that it

transforms non-trivially as

δθs = −kGS F aθa . (5.5)

The gauge invariant supersymmetric kinetic term for s is obtained from the superfield

Kähler potential
1

2
(S + S̄ + kGS K(0))2 , (5.6)

where S is the chiral superfield whose lowest component is s and K(0) = K(0)(Z, Z̄, V )

is the standard Kähler potential for the chiral superfields Z, involving the real superfield

V = V aT a of the vector multiplet. The full Kähler potential is now

K(z, z̄, s, s̄) = K(0)(z, z̄) +
1

2

(
s + s̄ + kGSK(0)(z, z̄)

)2
. (5.7)

We label the original Kähler potential and metric with superscripts (0), i.e. G
(0)

αβ̄
= K

(0)

,αβ̄
.

It follows from (5.7) that the scalar kinetic terms are

−Gαβ̄DµzαDµzβ̄ − Gαs̄DµzαDµs̄ − Gsβ̄DµsDµzβ̄ − Gss̄DµsDµs̄

= −G
(0)

αβ̄
DµzαDµzβ̄ − kGS(s + s̄ + kGSK(0))G

(0)

αβ̄
DµzαDµzβ̄

−(Dµs + kGSK(0)
,α Dµzα)(Dµs̄ + kGSK

(0)

,β̄
Dµzβ̄) , (5.8)

where we have used that (5.5) implies Xas = −kGSF
a for the holomorphic Killing vector,

so that Dµs = ∂µs+kGS F a Aa
µ. The first term in (5.8) is just the standard z-z̄ kinetic term,

and the two other terms come from the Green–Schwarz Lagrangian. Using the identity

1

2
∂µK(0) + iK(0)

µ = K(0)
,α ∂µzα + Aa

µF a − XaαK(0)
,α Aa

µ , (5.9)

where K
(0)
µ is the original Kähler connection, we rewrite the last term of (5.8). Then the

Green–Schwarz Lagrangian for the chiral scalars takes the form

LGS = −
(
∂µa + kGSK(0)

µ

)2
−

[
∂µ

(
ρ +

1

2
kGSK(0)

)]2

−kGS

(
2ρ + kGSK(0)

)
G

(0)

αβ̄
DµzαDµzβ̄ +

1

96π2
a εµνρσ∂µΩνρσ . (5.10)

Note that the Green–Schwarz Lagrangian includes a correction to the z-z̄ kinetic term.

The Green–Schwarz scalars and the new term in the Kähler potential (5.7) contribute

to the Kähler connection, giving

Kµ = K(0)
µ +

(
2ρ + kGSK(0)

)(
∂µa + kGSK(0)

µ

)
. (5.11)

– 16 –



J
H
E
P
1
1
(
2
0
0
6
)
0
6
8

Let the Chern–Simons form Ωνρσ satisfy

εµνρσ∂µΩνρσ = εµνρσ
[
bKKKµνKρσ + bAAF a

µνF a
ρσ + bRRRµνητR ητ

ρσ

]
, (5.12)

with Kµν the field strength of the corrected Kähler connection (5.11). Since the gauge

invariant correction to the Kähler potential (5.7) does not change the value of Im F a, the

constants b.. in (5.12) can be chosen to cancel the mixed anomalies in (5.4) as well as

the gravitational anomaly proportional to ImF a. This leaves only the usual G3 anomaly.

We conclude that the models considered in this section can be consistent only when the

Green–Schwarz mechanism with the composite connection is included.

As for the standard Green–Schwarz mechanism, there are corrections to the D-term

potential. We find

Da = D(0)a
[
1 + kGS(2ρ + kGSK(0))

]
, (5.13)

where D(0)a is the D-term before the corrections from the Green–Schwarz mechanism.

Again the D-term conditions can be solved by adjusting ρ to make Da = 0.

5.2 Supersymmetrization

So far our analysis has only included the bosonic terms of the anomalies. Since we started

with a supersymmetric theory it is natural to consider supersymmetrized forms of local

counter terms and the Green–Schwarz mechanism. Supersymmetric versions of the Green–

Schwarz Lagrangian are known [5, 4], so here we focus on the counter terms.

The consistent anomaly is not gauge invariant, so we cannot work in Wess-Zumino

gauge and must resort to superfields. The superfield version of the covariant anomaly is

straightforward, Acov ∝
∫

d4x d2θtr iΛW αWα + h.c., where W α denotes the non-abelian

superfield vector field strength and Λ is a chiral superfield.6 Supersymmetric expressions for

the difference between the consistent and covariant anomaly for a simple gauge group are

complicated [30 – 33]. Some simplication occurs for the mixed U(1) − G2 abelian anomaly

which can be obtained from [30, 31] and written as

AQ
mixed con −AQ

mixed cov =
1

64π2

∫
d4x d4θ

∫ 1

0
dg δΛC tr

[
QXg(A)

]
,

(5.14)

Xg(A) =

(
[DαA,Wα(A)] + [D̄α̇A, W̄ α̇(A)] + {A,DαWα(A)}

)

A→gA

.

As observed in (2.17), a desired property is that the abelian variation of the counter

term restructures the mixed abelian consistent anomaly to covariant form. From (5.14) we

can directly read off that the counter term

LSct(A,C) = − 1

64π2

∫
d4θ

∫ 1

0
dg C tr

[
QXg(A)

]
. (5.15)

6In this section, we focus on global supersymmetry. We use spinor indices α, α̇ for the components of

Weyl fermions. We use standard superspace conventions, for relevant details see [30, 31].
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has exactly this property. Note that this fixes the counter term only up to terms that

are invariant under abelian transformations. The non-abelian variation of the counter

term (5.15) should cancel the supersymmetrized version of the mixed U(1) − G2 non-

abelian anomaly Aa
mixed con. Due to the complicated structure of the non-abelian variation

δΘA, we have only confirmed the cancellation of Aa
mixed con at leading order.7 However, in

component form, the supersymmetric counter term (5.15) correctly reproduces the bosonic

counter term (2.14).

There is another approach to the mixed consistent anomaly involving the descent equa-

tions.8 This leads to a different form of the mixed consistent anomalies, and suggests a

counter term involving the non-abelian Chern–Simons three-form whose superfield expres-

sion can be found in [34, 5]. The resulting superfield counter term is similar to (5.15).

We have discussed some issues associated with a superfield formulation of counter terms

with the desired properties. Addition study is needed to recast the consistency conditions

and the full structure of the local counter terms in manifestly supersymmetric form.

6. Conclusions

We have clarified the consistency conditions that follow from the current conservation

law (3.15) in supergravity [7] for flat sigma-model target space and linearly realized gauge

symmetries. The analysis shows that anomalies arising from the non-invariance of the com-

posite Kähler connection under gauge transformations complicate the anomaly cancellation

conditions.

Starting from the consistent anomaly [22, 23] and including all finite local counter terms

we reduce the consistency conditions to a set of physically relevant conditions. For vanishing

Fayet–Iliopoulos couplings the conditions simplify to the standard anomaly cancellation

conditions well-known from the Standard Model or the MSSM. However, a non-vanishing

Fayet–Iliopoulos coupling ξ gives more involved consistency conditions. The usual G3

condition Tr T a{T b, T c} = 0 must hold, but the Fayet–Iliopoulos coupling modifies the

cancellation of the gravitational and the mixed U(1)−G2 anomalies. Some anomalies may

be removed by including finite local counter terms in the action. A consistent model then

requires:

G3 : 0 = tr
[
T a{T b, T c}

]
,

F aF̃ b : 0 = tr
[
QT aT b

]
+

1

2
ξ
[
C2(G) −

∑

r

C(r)
]
δab ,

RR̃ : 0 = tr(Q) − 1

2
ξ(nλ − 21 − nψ) ,

abelian : 0 = tr

[(
Q +

1

2
ξ
)(

Q + ξ
)
Q

]
− 3ξ3 . (6.1)

7The form of the consistent anomaly presented in [32, 33] may be more useful for this purpose since the

expressions there involve only eA and the complications of the non-abelian gauge variations δΘA do not

arise.
8We thank Massimo Bianchi and Emilian Dudas for drawing our attention to this point, see [25].
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Solving the full set of conditions to find a consistent model looks unlikely, nonetheless

it would be curious to see if there actually are consistent models. It is clear that the

Fayet–Iliopoulos coupling in such a model cannot be treated as an arbitrary parameter.

At the cost of including extra degrees of freedom, the Green–Schwarz mechanism pro-

vides enough flexibility to cancel anomalies for arbitrary values of the Fayet–Iliopoulos

couplings.

An immediate consequence of adding the Green–Schwarz Lagrangian is a mass term

for the abelian gauge boson and a modification of the D-term potential from the Green–

Schwarz scalar. In other words, in the presence of a Fayet–Iliopoulos coupling the abelian

gauge boson always gains a mass irrespective of the vacuum structure. Furthermore, the

D-term is corrected by the contribution from the Green–Schwarz scalar s. It then reads

1

2
D2 =

1

2

( ∑

i

qi|φi|2 + ξ + cGSK,s

)2
, (6.2)

for linearly transforming matter fields φi with U(1) charges qi. The cGS-term enters through

the Green–Schwarz Lagrangian. Formally, this correction is a one-loop effect, and there may

be more corrections at the same order in perturbation theory that affect the scalar potential.

This means there are effectively no field-independent Fayet–Iliopoulos couplings.9

As a generalization we also study consistency conditions for models with non-invariant

Kähler potentials. Again the models are assumed to have flat target space and linearly

realized gauge symmetries. We focus on models with simple gauge groups, leaving the

inclusion of U(1)-factors as a possible generalization. While local counter terms remove

mixed Kähler−G2 anomalies from the non-abelian consistency condition, the conditions

for cancelling KK̃ and gravitational anomalies cannot simultaneously be satisfied, and so

the models are inconsistent as they stand.

The Green–Schwarz mechanism based on the composite connection and the Kähler

potential can remove this type of non-abelian anomalies. Since the Kähler connection

transforms as an abelian connection under non-abelian gauge variations, it is possible to

arrange a Green–Schwarz Chern–Simons term to cancel the anomalies in the non-abelian

current conservation law. The simple models with non-invariant Kähler potentials can be

consistent only when this Green–Schwarz mechanism is included to cancel the anomalies.

As in (6.2), there are corrections to the D-term potential.
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